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Abstract

In this study we examine the relative performance of a range of methods for trans-
posing catchment model parameters to ungauged catchments. We calibrate 11 pa-
rameters of a semi-distributed conceptual rainfall-runoff model to daily runoff and snow
cover data of 320 Austrian catchments in the period 1987—1997 and verify the model
for the period 1976-1986. We evaluate the predictive accuracy of the regionalisation
methods by jack-knife cross-validation against daily runoff and snow cover data. The
results indicate that two methods perform best. The first is a kriging approach where
the model parameters are regionalised independently from each other based on their
spatial correlation. The second is a similarity approach where the complete set of
model parameters is transposed from a donor catchment that is most similar in terms
of its physiographic attributes (mean catchment elevation, stream network density, lake
index, areal proportion of porous aquifers, land use, soils and geology). For the cali-
bration period, the median Nash-Sutcliffe model efficiency ME of daily runoff is 0.67 for
both methods as compared to ME=0.72 for the at-site simulations. For the verification
period, the corresponding efficiencies are 0.62 and 0.66. All regionalisation methods
perform similar in terms of simulating snow cover.

1. Introduction

Predicting hydrological variables in ungauged catchments has been singled out as one
of the major issues in the hydrological sciences (Sivapalan et al., 2003). Predictions
are particularly difficult to make in alpine regions where data are sparse and the spatial
variability of the hydrological environment is enormous. The process of transferring
information from neighbouring catchments to the catchment of interest is generally
referred to as hydrological regionalisation (Bloschl and Sivapalan, 1995). Numerous
regionalisation methods have been proposed in the literature for the case of catch-
ment model parameters (Bldschl, 2005). Among the most widely used techniques are
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regressions between the model parameters and physiographic catchment attributes.
Typically, linear multiple regressions are used where each model parameter is esti-
mated independently from the others (e.g. Post and Jakeman, 1996, 1999; Sefton and
Howarth, 1998). The regressions are not always straightforward to interpret. In a com-
parative study of 331 catchments in Australia, Peel et al. (2000), for example, did not
find the parameters of the SYMHID model significantly correlated to the catchment
attributes. Seibert (1999) related the model parameters of the HBV model to the at-
tributes of 11 Swedish catchments within the NOPEX area. Relationships between
lake percentage and soil parameters found by Seibert (1999) could not be explained
by hydrologic reasoning while relationships between forest percentage and snow pa-
rameters supported the process basis of the model. Similar conclusions were drawn
by Kokkonen et al. (2003). They used the IHACRES model with 6 parameters and
found that high significance of regressions does not guarantee a set of parameters
with a good predictive power. Care must hence be taken when interpreting the physi-
cal meaning of parameter-descriptor relationships found by regressions.

The regression method is the most widely used regionalisation technique but alter-
native methods are in use. Vandewiele and Elias (1995) examined two methods based
on spatial proximity, the kriging method and the use of model parameter values from a
few neighbouring catchments in a Belgian case study. They found that the kriging ap-
proach provided a significantly better model performance than the nearest neighbour
approach although the model performance for some of the catchments was rather poor.
The question of whether or not homogenous catchments tend to occur in close prox-
imity to each other has been the subject of significant debate over the years. Shu
and Burn (2003) suggested that geographically close catchments are not necessarily
homogenous in terms of hydrological response. In their case study in Great Britain,
homogeneous spatial clustering patterns were found within a 62.5km radius from a
local clustering centre. Burn and Boorman (1993) assigned donor catchments based
on a similarity measure of physiographic catchment characteristics. In this method,
the catchment characteristics are similar to those of the regression approach but the
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regionalisation model structure is different as no assumption of linearity is made. Also,
the complete set of model parameters is usually transposed from one or more donor
catchments to the catchment of interest in this approach, while in the regressions, the
parameters are usually regionalised independently from each other. Along similar lines,
Campbell and Bates (2001) used a regional link function to estimate the parameters
of a quasi-distributed, non-linear flood event model for 39 watersheds in Australia with
good accuracy. Szolgay et al. (2003) jointly calibrated a monthly water balance model
to a number of catchments, where catchments were pooled together using cluster anal-
ysis of selected physiographic catchments attributes.

Merz and Bloschl (2004) examined the performance of various methods of region-
alising the parameters of a conceptual catchment model in 308 Austrian catchments.
They concluded that the methods based on spatial proximity performed better than
those based on physiographic catchment attributes. The present paper builds on
their analysis and examines the relative performance of regionalisation methods. The
present paper goes beyond Merz and Bléschl (2004) in three important aspects.

First, Merz and Bloschl (2004) used a lumped catchment model. In an Alpine country
such as Austria there may be merits in allowing different model states in different eleva-
tions of the catchment to improve the overall predictive performance. In this paper we
hence subdivide each catchment into elevation zones of 200 m. Second, even though
Merz and Bloschl (2004) tested the robustness of model parameters in a comprehen-
sive way, further gains in robustness may be obtained by a multi-objective calibration
where response data in addition to runoff are used. In this paper we hence use both
runoff data and snow cover data to calibrate and validate the model. Third, Merz and
Bloschl (2004) found that the regressions between model parameters and catchment
attributes performed not as well as other methods but it was not clear whether this was
due to the catchment attributes being poor hydrological indicators at the regional scale
or due to problems with the linearity assumption of the multiple linear regressions used.
In this paper we hence examine alternative methods that use catchment attributes and
are based on similarity measures.
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2. Data

This study was carried out in Austria using data from the period 1976—-1997. Austria
is flat or undulating in the east and north, and Alpine in the west and south. Eleva-
tions range from 115m a.s.l. to 3797 m a.s.l. Mean annual precipitation is less than
400 mm/year in the East and almost 3000 mm/year in the West. Land use is mainly
agricultural in the lowlands and forest in the medium elevation ranges. Alpine vegeta-
tion and rocks prevail in the highest catchments. The dataset used in this study includes
measurements of daily precipitation and snow depths at 1091 stations and daily air
temperature at 212 climatic stations. To calibrate and verify a catchment model, daily
runoff data from 320 gauged catchments were used with areas ranging from 10 km? to
9770 km? and a median of 196 km?. The spatial distribution of the climate stations and
the boundaries of the gauged catchments are shown in Fig. 1.

The inputs to the water balance model were prepared in two steps. First, the daily
values of precipitation, snow depth and air temperature were spatially interpolated by
methods that use elevation as auxiliary information. External drift kriging was used
for precipitation and snow depths, and the least-squares trend prediction method was
used for air temperatures (Pebesma, 2001). The spatial distribution of potential evapo-
transpiration was estimated by a modified Blaney-Criddle method (Parajka et al., 2003)
using daily air temperature and potential sunshine duration calculated by the Solei-32
model (Mészaros et al., 2002) that incorporates shading by surrounding terrain. In a
second step, a digital elevation model with a 1x1km grid resolution was used for de-
riving 200 m elevation zones in each catchment. Time-series of daily precipitation, air
temperature, potential evaporation and snow depth were then extracted for each of the
elevation zones to be used in the water balance simulations.

For testing different regionalisation approaches, we derived a range of physiographic
catchment attributes. The topographic attributes were catchment area, catchment av-
erage and coefficient of variation (CV) of topographic elevation, average and the CV of
topographic slope and the minimum and maximum of the topographic wetness index
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of Beven and Kirkby (1979). Stream network density was calculated from the digital
stream network map at the 1:50000 scale for each catchment. The FARL (flood atten-
uation by reservoirs and lakes) lake index was calculated according to IH (1999, pp.
5/19-27). The attributes related to precipitation were the catchment average of long
term mean annual precipitation, the average of the long term mean of maximum an-
nual daily summer and winter precipitation for which the record length ranged from 45
to 97 years as well as the long term mean of maximum annual 1 hourly rainfall intensity
from shorter records. The boundaries of porous aquifers were taken from the Hydro-
graphic Yearbook (HZB, 2000) from which the areal proportion of porous aquifers in
each catchment was estimated. Digital maps of land use (Ecker et al., 1995), regional
soil types (based on the FAO map, see OBG, 2001) and the main geological forma-
tions (Geologische Bundesanstalt, 1998) were also used to derive the respective areal
proportions in each catchment.

3. Model structure and model calibration

The model used in this paper is a semi-distributed conceptual rainfall-runoff model, fol-
lowing the structure of the HBV model (Bergstrom, 1976 and Lindstrom et al., 1997).
The model runs on a daily time step and consists of a snow routine, a soil moisture rou-
tine and a flow routing routine. The snow routine represents snow accumulation and
melt by a simple degree-day concept, using degree-day factor DDF and melt tempera-
ture T,,. Catch deficit of the precipitation gauges during snowfall is corrected by a snow
correction factor, SCF. A threshold temperature interval T5—Ts is used to distinguish
between rainfall, snowfall and a mix of rain and snow. The soil moisture routine rep-
resents runoff generation and changes in the soil moisture state of the catchment and
involves three parameters: the maximum soil moisture storage FC, a parameter repre-
senting the soil moisture state above which evaporation is at its potential rate, termed
the limit for potential evaporation LP, and a parameter in the non-linear function relat-
ing runoff generation to the soil moisture state, termed the non-linearity parameter .
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Runoff routing on the hillslopes is represented by an upper and a lower soil reservoir.
Excess rainfall enters the upper zone reservoir and leaves this reservoir through three
paths, outflow from the reservoir based on a fast storage coefficient K; percolation to
the lower zone with a constant percolation rate Cp; and, if a threshold of the storage
state LS~ is exceeded, through an additional outlet based on a very fast storage co-
efficient K,. Water leaves the lower zone based on a slow storage coefficient K,. The
outflow from both reservoirs is then routed by a triangular transfer function represent-
ing runoff routing in the streams, where Cp, is a free parameter. The model concept is
similar to that presented in Merz and Bloschl (2004). The difference is that in this study
we used a semi-distributed model structure of 200 m elevation zones while the model
of Merz and Bloschl (2004) was spatially lumped.

The model was run for all 320 gauged catchments in Austria. Daily inputs (pre-
cipitation, air temperature and potential evapotranspiration) were allowed to vary with
elevation within a catchment, and the soil moisture accounting and snow accounting
was performed independently in each elevation zone. However, the same model pa-
rameters were assumed to apply to all elevation zones of a catchment. From a total
of 14 model parameters, 3 parameters were preset (T;=2°C, T¢=0°C, T;,=0°C) and
11 parameters (Table 1) were estimated by automatic model calibration. We used the
shuffled complex evolution (SCE-UA) scheme of Duan et al. (1992) to calibrate the
model parameters to observed runoff and snow cover. The objective function (Z,)
used in the calibration involves three parts which are related to runoff (Z,), snow cover
(Zs) and a priori information about the distribution of each model parameter (Z5). Z,
is the weighted mean of these parts:

Zo=Wy-Zog+Wy-Zg+wWz-Zp, (1)

where the weights were obtained in test simulations as w;=0.6, w,=0.1 and w3=0.3.
The runoff objective function Z, combines the Nash-Sutcliffe coefficient (ME) and
the relative volume error (VE):
Zo=(1-ME)+w,-VE, (2)
515
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Qsim i is the simulated streamflow on day /, Qs ; is the observed streamflow, Q. is
the average of the observed streamflow over the calibration (or verification) period of n
days, and the weight w, was found from test simulations as w,=0.1.

The snow objective function Z5 used observed and simulated snow coverage. Ob-
served snow coverage was estimated from daily grid maps constructed from the ob-
served snow depth data. If the catchment zone average of snow depth was greater
than 0.5 mm than the zone was considered as snow covered, otherwise as snow free.
Simulated snow coverage was derived from the snow water equivalent simulated by the
model where a zone was considered snow covered if the water equivalent was greater
than 0.1 mm, otherwise it was considered snow free. Snow simulations on a particular
day were considered to be poor if the difference between simulated and observed snow
coverage was greater than 50% of the catchment area. The snow objective function Zs
was then defined as the ratio of the number of days with poor snow cover simulation
(nps) to the total number of days in the simulation period:

Zs =~ (5)
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The third term, Zp, allows inclusion of an expert estimate about the a priori distribu-
tion of each parameter. In calibration procedures, the parameter values are usually
bounded between two limits (Duan et al., 1992) and otherwise no a priori assumptions
are made about the parameters. This implies that the a priori distribution of the param-
eters is a uniform distribution. We believe that it is possible to make a more informed
guess about the shape of the a priori distribution and introduced a penalty function, Zp,
based on an a priori distribution for each parameter:

Pj=hi,;
fmax,/ f/ (Pu,/—Pl,/ >

k
Zp= .

(6)

j=1 max, /
Prmax,j — P1.j
s =4 () i

where p; is the model parameter j to be calibrated, p, and p,, are the lower and upper
bounds of the parameter space, respectively, p,,., is the parameter value at which the
a priori distribution is at a maximum and k is the number of parameters to be calibrated.
The probability density function of the Beta distribution f is:

f(x|u,v) = B V)x“-1(1 —x)Tfor0<x<1,u>0,v>0 (8)
with
1
Y v—1 4, _ (W) (v)
B(u,v)_/x (1-x) dx—m 9)

0

For all catchments we assigned the same values of the v, v, p, and p,, as per Table 1
which has been taken from Merz and Bldschl (2004).
For the evaluation of the calibration and verification efficiencies the entire period of
observation (1976—1997) was split into two 11 year periods: the verification period from
517
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1 November 1976 to 31 December 1986 and the calibration period from 1 November
1987 to 31 December 1997. Warm up periods from January to October were used
in both cases. Tables 2 to 4 give the model performance of the 320 basins (first line
“at-site”) for both the calibration and the verification periods. Figure 2 shows the model
performance plotted as cumulative distribution functions (CDFs). The model efficiency
ME of runoff is shown on the left, the volume error VE of runoff in the centre and the
snow cover error on the right. The median of ME over the 320 catchments in the cal-
ibration and verification periods is 0.72 and 0.66, respectively. This means that the
model performance decreases slightly when moving from calibration to verification.
The median of VE in the calibration and verification periods is 0.3% and —-5.3%, in-
dicating that the calibration is essentially unbiased while the verification period does
exhibit a small underestimation of runoff. The scatter of the volume error (75%—25%
quantile, Table 3) increases somewhat from 7 to 11% which translates into a slightly
steeper CDF in Fig. 2 (centre panel) for the case of the verification period. The me-
dian of the snow performance measure Zs in the calibration and verification periods
is 6.5% and 6.4%, respectively, which indicates that the model performance remains
essentially the same.

Overall, the magnitudes of these model efficiencies are similar to results from other
regional studies published in the literature (e.g. Seibert, 1999, Perrin et al., 2001). The
runoff performances (ME and VE) are somewhat better than those in Merz and Bldschl
(2004) even though we used snow data in the objective function, which was not the
case in Merz and Bloschl (2004). The differences are 0.03 and 0.05 in terms of ME for
the calibration and verification periods, respectively. This indicates that the model has
been reliably calibrated to the data set.

The spatial patterns of the model performances are presented in Fig. 3. The runoff
efficiencies ME and runoff volume errors VE are shown at the top and the centre, re-
spectively, the snow cover errors Z5 are shown at the bottom. The left column relates to
the calibration period and the right column to the verification period. Figure 3 indicates
that there are significant regional differences in the model performance. In the western,
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Alpine parts of Austria the simulation of runoff is significantly better than in the eastern
lowlands. The Alpine catchments are wetter and snowmelt is more important than in
the catchments of the East. It appears that large runoff depths and the presence of
snow packs are amenable to accurate runoff simulations.

4. Regionalisation methods

We explored four groups of regionalisation methods. In the first group, we selected
each parameter as the arithmetic mean of all 320 calibrated values in Austria (termed
global mean) or, alternatively, as the arithmetic mean of a region within a radius of
50km from the catchment of interest (termed local mean). This group of methods
assumes that all catchments within the selected radius are similar and differences in
the parameter values arise only from random factors.

The second group of regionalisation methods is based on the spatial proximity (or
spatial distance) between the catchment of interest and the gauged catchments. The
spatial distance between two catchments was measured by the distance of the re-
spective catchment centroids. The methods of this group were the nearest neighbour
method where the complete set of model parameters was taken from one donor catch-
ment; the inverse distance weighting where parameters from a number of donor catch-
ments were combined; and the ordinary kriging method. The ordinary kriging method
was based on an exponential variogram with a nugget of 10% of the observed variance,
a sill equal to the variance, and a range of 60 km. This is consistent with the empirical
variograms of most of the calibrated model parameters. To complement the ordinary
kriging method, we also examined ordinary kriging where we left out the immediate
upstream and downstream neighbours to assess the effect of nested catchments. We
termed this method kriging without nested neighbours.

In the third group we estimated each model parameter independently from regres-
sions to catchment attributes. We tested global multiple linear regression, where we
included all 320 catchments; local multiple linear regression within a 50 km search ra-
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dius; and local georegression, where we interpolated the residuals of the regressions
by ordinary kriging. In all cases we estimated the regression coefficients by the or-
dinary least squares method. Out of the selected catchment attributes we only used
the set of those three attributes that were associated with the largest multiple corre-
lation coefficient for each station and each model parameter. To diagnose and avoid
multicollinearity, we examined the variance inflation factor (Hirsch et al., 1992). If the
inflation factor was greater than 10, then this set of three attributes was rejected and
the scheme proceeded to the second best correlation. The rationale of this choice is
that a large correlation coefficient may be a good indicator of the predictive power of
the attributes provided there is no collinearity.

The fourth group of methods is also based on catchment attributes but uses a dif-
ferent regionalisation model structure. The main idea of this group is to find a donor
catchment that is most similar in terms of its catchment attributes, and to transpose the
complete parameter set to the catchment of interest. Leaving the combination of model
parameters unchanged may address some of the problems encountered with the re-
gression approach (Merz and Bloschl, 2004). The donor catchment was selected as
the gauged catchment with the smallest similarity index @ (e.g. Burn and Boorman,
1993):

‘DZ

WhICh is defined as the sum of absolute differences of the k selected physiographic at-
tributes of the gauged (X ) catchment and the (ungauged) catchment of interest (XU),
normalized by its range (AX). We examined the following combinations of catchment
attributes: combinations based on topography (average catchment elevation, slope,
topographic index); geomorphology (average stream network density, FARL index and
areal proportion of porous aquifers); land use classes; soils classes; geology classes;
rainfall (long-term mean annual precipitation, maximum daily summer and winter pre-
cipitation, 1 hourly rainfall intensity); and an a priori defined combination of selected
520

IX X |
(10)

HESSD
2, 509-542, 2005

A comparison of
regionalisation
methods for
catchment model
parameters

J. Parajka et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/509/hessd-2-509_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/509/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

attributes (mean catchment elevation, stream network density, FARL index and areal
proportion of porous aquifers, land use, soils and geologic units). We also tested a
diagnostic case termed “perfect”’. For the perfect similarity case we transposed the
complete parameter set from the donor catchment that was most similar to the catch-
ment of interest in terms of the model parameter values. The similarity was defined by
the sum of the absolute differences between the parameter values, normalized by its
range similar to Eq. (10). This is a diagnostic case which probes the potential of the
catchment model performance that can be achieved in ideal donor catchment selec-
tion. In a practical application this is not a viable method as the model parameters are
of course unknown at the ungauged site of interest.

We examined the predictive accuracy of the regionalisation approaches by jack-knife
cross-validation. In this approach, we treated one gauged catchment as ungauged
and simulated the water balance dynamics using parameters estimated from regional
information only. In a second step, we estimated the model performance by comparing
the simulated and observed hydrographs as well as the simulated and observed snow
cover. This comparison gave us ME, VE and Z5 model efficiencies. We repeated
the analysis for each catchment in turn and calculated the statistics of these error
measures for all catchments. The comparison of these error measures with those for
the locally calibrated case (here termed at site), both for the calibration and verification
periods, indicates what decrease of model performance one would have to expect
when moving from gauged to ungauged catchments. This decrease we term the spatial
loss in model accuracy. The decrease in model performance when moving from the
calibration period to the verification period we term the temporal loss in model accuracy.

5. Performance of regionalisation methods

The performance of the regionalisation methods is presented in terms of their cumula-
tive distribution functions (CDFs) in Figs. 4 to 8 and the median and quantile statistics
in Tables 2, 3 and 4. For a favourable model performance, the ME runoff efficiencies
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should be large, the VE volume errors should be close to 0 with a small scatter and the
Zs snow cover errors should be small.

Figure 4 shows the performance of the group of methods based on spatial averaging.
The left panels show the ME runoff efficiencies, the centre panels show the VE runoff
volume errors and the right panels show the Z5 snow cover errors. The top panels
relate to the calibration period and the bottom panels to the verification period. Figure 4
indicates that the global mean method (red line) provides rather poor runoff simulations
as compared to the at-site simulations (blue line). The median runoff efficiencies for the
global mean method case are ME=0.61 (calibration period) as compared to ME=0.72
for the at site case (Table 2) and the scatter of the volume errors is much larger (24.6
as compared to 7.4%, Table 3). It is clearly very important to account for differences
between catchments, and using the same parameter set for the entire study region is
inappropriate for runoff modelling. Using the local mean method slightly improves the
efficiencies over the global mean (ME=0.64) although the difference is not large. It is
interesting that the model performance in terms of snow cover only decreases slightly
when moving from the at-site case to the global mean method case (Table 4).

The CDFs of model performances obtained from the regionalisation methods based
on spatial proximity are plotted in Fig. 5. The methods only differ very slightly in terms
of their runoff performance. The median ME runoff efficiency (Table 2) in the case of
kriging is ME=0.67 in the calibration period and 0.62 in the verification period. The
at-site efficiencies are ME=0.72 and 0.66 which means that the spatial and temporal
losses are both about 0.05. The scatter of the VE runoff volume error is similar for all
spatial proximity methods (about 17% in both periods), which is certainly larger than the
scatter of the at-site simulations (7 and 11% in the calibration and verification periods,
Table 3). The performance of kriging and kriging without nested neighbours is similar
which indicates that the favourable performance of kriging is not only a result of the
same portion of the landscape draining into nested catchments. There appear to exist
important similarities of model parameters across catchment boundaries.

Figure 6 shows the results for the multiple regression methods. In this group of
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methods, the local methods (local regression and georegression) perform better than
the global method (global regression). This suggests that it is indeed useful to account
for regional differences in the regression equations. The local georegression performs
somewhat better than the local regression (e.g. ME=0.65 as compared to 0.62 for the
calibration period) which suggests that the spatial correlation of model parameters can
enhance the estimates over only using regressions with catchment attributes.

The similarity approach provides an alternative method of using catchment attributes
and the results are shown in Fig. 7. The best model performance in terms of ME
runoff efficiency is provided by the combination similarity measure. The spatial losses
are very similar to the kriging approach (0.72-0.67=0.05 in the calibration and 0.66—
0.61=0.05 in the verification periods). The runoff volume errors, VE, are slightly larger
than for other similarity methods although the difference is not large (e.g. 18% scatter
for the land use similarity measure as compared to 20% scatter for the combination
similarity measure, both for the calibration period). Again, the snow performances Zg
are very similar for all the methods. It is interesting to examine the distances between
the donor catchments and the catchments of interest. The median distance was similar
for all similarity measures and was on the order of 10 km. This suggests that there is
significant similarity in the physiographic factors over relatively short distances, which
may be one of the reasons for the spatial proximity methods to perform well. The case
of the “perfect” similarity index illustrates the potential of improving the regionalisation
methods over the other cases examined. The spatial loss of ME runoff efficiency is
only 0.02 for both the calibration and verification periods which is less than half of the
spatial loss of the best regionalisation methods (0.05 in case of both the combination
similarity measure and ordinary kriging). The scatter in the volume errors is only 10%
as compared to 17% for the best regionalisation method (Table 3). This indicates that
there is indeed potential for improving the criteria for finding donor catchments. For the
snow cover errors Zs there is, however, very little difference.

The summary of the best regionalisation methods from each group is presented in
Fig. 8. The methods are the local mean method, kriging, local georegression, and the
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combination similarity index approach. The differences between the methods are not
large but they do exist. The ME runoff efficiency shows very little difference for efficien-
cies of, say, ME>0.7 but for catchments where the simulated daily runoff fitted poorly to
observed values the differences are larger with kriging and the combination similarity
index performing best. The VE runoff volume errors exhibit the most noticeable scatter
around the at-site calibration, but it is not possible to ascertain from the CDFs which
regionalisation approach produces the smallest scatter. The biases are smallest for the
combination similarity method (red line in Fig. 8), at least for the verification period. As
indicated in the previous figures, the differences between the regionalisation methods
are very small in terms of snow performance. For catchments with rather poor snow
simulations (Z5>9%, e.g.) the combination similarity index performs slightly better than
other regionalisation approaches.

To examine whether there are spatial patterns in the performance of the regionalisa-
tion methods, Fig. 9 shows the calibration and verification performances for the case of
the kriging regionalisation method. The regional patterns of the ME runoff efficiencies
(Fig. 9 top) are indeed very similar to those of the at-site calibration and verification
(Fig. 3 top). There appears to exist, however, more spatial scatter, which is mainly
due to a number of small catchments in the central alpine parts of Austria, where the
regionalisation performed poorer. While the median spatial loss in model performance
over all catchments was 0.05 in the calibration period it is larger for catchments with
areas of less than 100 km? (about 0.09).

The spatial patterns of the VE runoff volume errors (Fig. 9), again, exhibit larger
scatter than those of the at-site case (Fig. 3). This is consistent with the larger scatter
(75%—25% quantiles) indicated in Table 3 and the steeper CDF shown in Fig. 5. The
difference is particularly large in the high alpine parts of Austria, which is consistent
with the large scatter in ME as shown in the top panels of Fig. 9. The regional snow
cover errors also show somewhat larger scatter in the regionalised case as compared
to the at-site simulations.
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6. Discussion and conclusions

The results indicate that two regionalisation methods perform best. The first is a krig-
ing approach where the model parameters are regionalised independently from each
other based on their spatial correlation. The second is a similarity approach where
the complete set of model parameters is transposed from a donor catchment that is
most similar in terms of its physiographic attributes (mean catchment elevation, stream
network density, lake index, areal proportion of porous aquifers, land use, soils and
geology). The first result is consistent with Merz and Bldschl (2004) who indicated that
spatial proximity may be a better similarity measure for transposing catchment model
parameters in space than physiographic catchment attributes. We improved the model
structure over that used in Merz and Bl6schl (2004) by allowing for elevation zones and
we enhanced the parameter estimation by using snow data in addition to runoff but
the finding of the favourable performance of kriging remains the same. Similar to Merz
and Bldschl (2004), there is only a slight decrease in model performance when leav-
ing out the immediate (nested) neighbours in the regionalisations. This suggests that
the favourable performance is not only a result of the same portion of the landscape
draining into nested catchments. There appear to exist important similarities of model
parameters across catchment boundaries. It is likely that these similarities are related
to real hydrological controls that vary smoothly in space. For a number of catchments
the regionalisation procedure does perform poorly with efficiencies one would not use
in practical applications. This is particularly the case in the high alpine areas where
the spatial hydrologic variability is particularly large. Vandewiele and Elias (1995) have
pointed to similar issues, which they traced back to both spatial hydrologic variability
and poor data quality.

The second result of the favourable performance of the similarity approach using
physiographic catchment attributes is interesting in the light of the relatively poor per-
formance of the regression approach found both in Merz and Bloschl (2004) and in this
paper. One of the advantages of the similarity approach may be that the complete set
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of model parameters is transposed from a donor catchment. This is consistent with
the findings of Kokkonen et al. (2003, p. 2219), who concluded that “when there is a
reason to believe that, in the sense of hydrological behaviour, a gauged catchment
resembles the ungauged catchment, then it may be worthwhile to adopt the entire set
of calibrated parameters from the gauged catchment instead of deriving quantitative
relationships between catchment descriptors and model parameters”. The other ad-
vantage of the similarity approach over the regression method as used in this paper
is that it does not make the assumption of linearity. The main reason of using linear
regression models is that of convenience although the underlying hydrological rela-
tionships are unlikely linear in nature. In our study, we tested various combinations of
similarity indices. The favourable performance of the diagnostic index termed “perfect”
suggests that there still exists potential for improving the regionalisation methods by
identifying more relevant physiographic controls.

Overall, the model performance is similar to that of other regionalisation studies in
the literature. Seibert (1999) reported of a median loss in ME runoff efficiency from
0.81 to 0.79 when moving from calibrated parameters to regionalised parameters for
the same set of 11 catchments, but a decrease to 0.67 for a separate set of 7 catch-
ments. Beldring et al. (2002) found median ME of 0.68 for both a set of 141 gauged
catchments and a set of 43 catchments treated as ungauged although for 20% of the
catchments belonging to the second set the efficiencies were less than 0.3. As com-
pared to Merz and Bloschl (2004), the ME model performances increased by between
0.07 and 0.10 depending on the regionalisation method. This is mainly due to the
improved model structure of allowing for elevation zones. However, the uncertainty is
still large. As pointed out by Bléschl (2005), site visits involving a field assessment
of catchment behaviour may assist in improving the model performance beyond what
can be realistically achieved from catchment attributes that are available at the regional
scale.

The comparisons of the regionalisation methods indicated that the snow simulations
are almost insensitive to the choice of method. Obviously, out of the 11 calibrated
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model parameters it is only the degree day factor and the snow correction factor that
will affect snow simulations. The three other snow model parameters were preset.
However, the lack of sensitivity may also be related to the snow data and the spatial
snow interpolation. In this study, point snow depth measurements have been spatially
interpolated and the point data may not be very representative of the catchment snow
cover. One possibility of improving the spatial representativeness is the use of satellite
snow cover data (e.g. Grayson et al., 2002) which will be pursued in further research.
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Table 1. Model parameters and a priori distributions. v and v are the parameters of the Beta catchment model
distribution (Eq. 8), p, and p,, are the lower and upper bounds of the parameter space and p,,,,, parameters
is the parameter value at which the Beta distribution is at a maximum (Eq. 6).
J. Parajka et al.

Parameter name  Model part p, Py u v P max
SCF (-) Show 1.0 1.5 12 40 1.03
DDF (mm/°C day) Show 0.0 5.0 20 40 125
LP/FC (-) Soil 0.0 1.0 40 12 094
FC (mm) Soil 0.0 6000 1.1 1.5 100.2

B (-) Soil 00 200 1.1 1.5 3.4

K, (days) Runoff 0.0 2.0 20 4.0 0.5

K, (days) Runoff 20 30.0 20 40 9.0
K, (days) Runoff 30.0 180.0 1.05 1.05 105.0
CP (mm/day) Runoff 0.0 8.0 20 4.0 2.0
CR (dayszlmm) Runoff 0.0 50.0 1.05 1.05 250
LS,y (mm) Runoff 1.0 1000 3.0 3.0 505
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Table 2. Model efficiency of runoff (ME) according to Nash-Sutcliffe for gauged catchments
(at-site) and ungauged catchments (various regionalisation procedures) both for the calibration
and the verification periods. First value: median ME efficiency. Second value: difference of

A comparison of

75% and 25% quantiles of efficiencies, i.e. a measure of scatter. High model performances are regionalisation
associated with large medians and small scatter. methods for
catchment model
Group Method Calibration  Verification parameters
1987-1997 1976-1986

Local At site 0.72/0.13  0.66/0.20 J. Parajka et al.
Mean Global mean 0.61/0.21 0.56/0.25
Mean Local mean 0.64/0.18 0.60/0.23
Spatial proximity Nearest neighbour 0.66/0.18 0.61/0.22
Spatial proximity Inverse distance weighting 0.66/0.17 0.61/0.21
Spatial proximity Kriging 0.67/0.16 0.62/0.20
Spatial proximity  Kriging without nested neighbours  0.66/0.16 0.61/0.22
Regression Global multiple regression 0.60/0.24 0.54/0.28
Regression Local multiple regression 0.62/0.19 0.58/0.25
Regression Local georegression 0.65/0.19 0.60/0.22
Similarity Topography 0.66/0.20 0.61/0.22
Similarity Geomorphology 0.64/0.19 0.58/0.24
Similarity Land use 0.65/0.21 0.61/0.25
Similarity Soils 0.64/0.21 0.59/0.24
Similarity Geology 0.64/0.20 0.61/0.23
Similarity Rainfall 0.62/0.21 0.57/0.25
Similarity Combination 0.67/0.17 0.61/0.21
Similarity Perfect 0.70/0.14 0.64/0.20

531

EG

C


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/509/hessd-2-509_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/509/comments.php
http://www.copernicus.org/EGU/EGU.html

HESSD

2, 509-542, 2005
Table 3. Volume errors of runoff (VE) for gauged catchments (at-site) and ungauged catch-
ments (various regionalisation procedures) both for the calibration and the verification periods.
First value: median of VE (in %). Second value: difference of 75% and 25% quantiles of VE (in

A comparison of

%), i.e. a measure of scatter. High model performances are associated with median VE close regionalisation
to 0 and small scatter. methods for
catchment model
Group Method Calibration  Verification parameters
1987-1997 1976-1986
Local At site 0.3/74  -5.3/10.9 J. Parajka et al.
Arithmetic Mean Global mean -1.3/24.6 -9.2/22.2
Arithmetic Mean Local mean -2.2/20.0 -8.6/18.1
Spatial proximity Nearest neighbour 2.8/18.1 -5.0/17.2
Spatial proximity Inverse distance weighting -1.3/18.0 -8.5/16.1
Spatial proximity Kriging 0.1/16.9 -8.1/16.1
Spatial proximity  Kriging without nested neighbours 0.3/17.6 -8.2/17.1
Regression Global multiple regression 0.8/27.1 -7.2/25.5
Regression Local multiple regression 0.8/23.3 -7.3/22.4
Regression Local georegression 1.0/21.5 -6.9/21.2
Similarity Topography 1.4/18.5 -6.3/17.1
Similarity Geomorphology 2.1/20.0 -5.4/20.9
Similarity Land use 1.5/18.1 -5.5/16.1
Similarity Soils 2.7/18.0 -4.1/17.8
Similarity Geology 2.3/18.0 -5.2/17.5
Similarity Rainfall 2.6/23.7 -5.9/22.1
Similarity Combination 1.8/20.0 -5.6/17.5
Similarity Perfect 1.9/9.9 -5.1/18.2
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Table 4. Snow cover simulations errors (Zs) for gauged catchments (at-site) and ungauged
catchments (various regionalisation procedures) both for the calibration and the verification
periods. First value: median of the percentage of days with poor snow cover simulations.

A comparison of

Second value: difference of 75% and 25% quantiles, i.e. a measure of scatter. High model regionalisation
performances are associated with small medians and small scatter. methods for
catchment model
Group Method Calibration  Verification parameters
1987-1997 1976-1986

Local At site 6.55/3.79  6.43/3.39 J. Parajka et al.
Mean Global mean 6.90/4.38 7.10/4.03
Mean Local mean 6.87/3.96 6.67/3.66
Spatial proximity Nearest neighbour 6.72/3.74 6.63/3.34
Spatial proximity Inverse distance weighting 6.77/4.13 6.60/3.39
Spatial proximity Kriging 6.72/4.23 6.63/3.26
Spatial proximity  Kriging without nested neighbours  6.77/4.18 6.65/3.29
Regression Global multiple regression 6.97/3.94 6.90/3.86
Regression Local multiple regression 7.00/3.79 6.55/3.61
Regression Local georegression 6.97/3.89 6.77/3.29
Similarity Topography 6.63/3.71 6.40/3.04
Similarity Geomorphology 6.65/3.89 6.40/3.19
Similarity Land use 6.60/3.79 6.38/3.36
Similarity Soils 6.70/3.76 6.67/3.21
Similarity Geology 6.95/4.11 6.60/3.41
Similarity Rainfall 6.80/4.18 6.80/3.31
Similarity Combination 6.65/3.81 6.48/3.11
Similarity Perfect 6.55/3.99 6.43/3.54
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Fig. 1. Topography (m a.s.l.) of Austria and boundaries of the gauged catchments used in
this paper. The dots show the locations of stations with precipitation and snow depth measure-
ments.
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Fig. 2. At-site calibration and verification performances: Cumulative distribution functions
(CDF) of the model efficiencies of daily runoff (ME, left), volume errors of runoff (VE, centre)
and percentage of days with poor snow cover simulations (Zg, right). 320 basins, calibration
(1987-1997) and verification (1976—1986) periods.
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Fig. 3. At-site calibration and verification performances: Model efficiencies of daily runoff (ME,
top), volume errors of runoff (VE, centre) and percentage of days with poor snow cover simula-
tions (Zg, bottom). 320 basins, calibration (1987-1997) and verification (1976—1986) periods.
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Fig. 4. Performance of the spatial averaging group of regionalisation methods: Cumulative
distribution functions (CDF) of the model efficiencies of daily runoff (ME, left), volume errors of
runoff (VE, centre) and percentage of days with poor snow cover simulations (Zg, right). 320
basins, calibration (top) and verification (bottom) periods.
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Fig. 6. Performance of the multiple regression group of regionalisation methods: Cumulative
distribution functions (CDF) of the model efficiencies of daily runoff (ME, left), volume errors of
runoff (VE, centre) and percentage of days with poor snow cover simulations (Zg, right). 320
basins, calibration (top) and verification (bottom) periods.
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Fig. 7. Performance of the similarity index group of regionalisation methods: Cumulative dis-
tribution functions (CDF) of the model efficiencies of daily runoff (ME, left), volume errors of
runoff (VE, centre) and percentage of days with poor snow cover simulations (Z, right). 320
basins, calibration (top) and verification (bottom) periods.
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Fig. 8. Summary of the performance of the best regionalisation methods of each group: Cu-
mulative distribution functions (CDF) of the model efficiencies of daily runoff (ME, left), volume
errors of runoff (VE, centre) and percentage of days with poor snow cover simulations (Zg,
right). 320 basins, calibration (top) and verification (bottom) periods.
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Fig. 9. Performance of the kriging regionalisation method: Model efficiencies of daily runoff
(ME, top), volume errors of runoff (VE, centre) and percentage of days with poor snow cover
simulations (Zg, bottom). 320 basins, calibration (1987-1997) and verification (1976—1986)
periods.
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